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In [3] Golomb describes, for I < p < 00, the Hr,P(R)-extremal extension
F* of a function f:E ~ R (Le., the Hr'P-spline with knots in E) and studies the
cone H;;£ of all such splines. We study the problem of determining when F* is in
Wr,p "" Hr,,> n LP. If F* E Wr,p, then F* is called a Wr'"-spline, and we denote by
W:;;l the cone of all such splines. If E is quasiuniform, then F* E Wr,p if and
only if {f(ti)}..EE E [p. The cone W;'£ with Equasiuniform is shown to be homeo
morphic to [P.'Similarly, H;'k is homeomorphic to hr ,". Approximation properties
of the Wr'P-splines are studied and error bounds in terms of the mesh size lEi
are calculated. Restricting ourselves to the case p = 2 and to quasiuniform
partitions E, the second integral relation is proved and better error bounds in
terms of I E I are derived.

1. INTRODUCTION

We denote by Hr,p(R) == Hr,p, 1 < P < OCJ and r = 1, 2,... , the set of
functions which have an absolutely continuous (r - l)th derivative and
whose rth derivative is in LP(R) == LP. Let E be a set of real numbers and
f a mapping of E into the set of reals, R. Golomb [3] gives necessary and
sufficient conditions for

(1.1)

to exist. This problem can be separated into two. In the first place, one must
decide whether the set over which x ranges is nonvoid, and secondly, if it
is, it must be decided whether the resulting LP minimization problem has a
solution. Solutions to (l.l) are called extremal Hr,p-extensions off If E is a
finite set consisting of more than r - 1 points, then f: E --+ R has a unique
extremal Hr'P-extension F* which we call the Hr'P-spline interpolating f on
E. Golomb obtains necessary and sufficient conditions for (1.1) to exist in
terms of the Hr'P-splines.

* Most of the work for this paper was done at Purdue University, West Lafayette,
Indiana, as a Ph.D. thesis directed by M, Golomb. The author wishes to thank Professor
Golomb for his kind assistance. Part of this work was supported by N.S.F.
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THEOREM l.l (Golomb). Suppose {It, t2 , ... : is a dense subset 0/ E,
en = {t1 , .•. , tn }, and Fn is the Hr·l'-spline that interpolates/on en' Iff: E --~ R
is continuous, then f has an extremal Hr.l l-extension if and only i/ the sequence

(1.2)

is bounded.

In this paper we will be interested in an extremal problem similar t<:1'
(1.1). Let wr . 11 == Hr,p n LP, so that wr ,lI is the usual Sobolev space of
real-valued functions. Since 1 < P < 00, it is easy to see that wr • lI is dense
in Hr. lI when Hr,p is supplied with the (uniformly rotund) norm

, r ) l/p

II x Il w '" = (I I xUi)1 P -f- 11 Drx lip.
l~,l

wr •
p is a uniformly rotund Banach space when supplied with the norm

il x Ilwr,p = 11 x IlL. + II Drx . We call x* an extremal Wr'P-extension of
f: E-+ R if

(1.3)

is attained at x = x* . We will, from time to time, use the term Wr,Jl-spline
instead of "extremal Wr'P-extension." Necessary and sufficient conditions
will be given for (1.3) to exist.

The set W:'1! of solutions to (1.3) is studied and various topological
properties are derived. In particular it is shown that if E is quasiuniform then
W:'1! is homeomorphic to IP, closed, and nowhere dense in wr,Jl. Approxima
tion properties of the Wr'P-splines are discussed in both the LP and L'L norms.
Interpolation space theory yields results in U for p < q < oo. When spe
cializing to the Hilbert space case we find that for quasiuniform meshes the
second integral relation holds and hence we can improve our error estimates
for smooth functions in the usual manner. Again, interpolation space theory
allows us to derive new error bounds for functions in the Besov spaces.

2, EXISTENCE AND CHARACTERIZATION

In order to simplify the statements of theorems and proofs we will hence
forth assume that all the functions f: E -+ R have a continuous extension
to R. In particular this means that we may assume E is closed, We now
indicate the relationship between the Wr,p and Hr'P-extremal extension
problem.
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LEMMA 2.1. Suppose f: E -+ R. If F* is an extremal Wr'P-extension off
then F* is an extremal Hr'P-extension off

Proof We set V/ = {DrF: FE Wr,p and FIE = f}. Clearly V/ is a flat
in LP and by hypothesis DrF* E V/ is the element of smallest LP norm in
V/. It follows from [8, p. 18], that

t (I DrF* IP-l sgn DrF*) DrG = ° (2.1)

for all G E Wr,p which vanish on E. If we restrict our attention to functions
G which are infinitely differentiable with compact support we conclude (in
a completely analogous manner to that of [3, Theorem 4.2a]):

(i) I DrF* IP-l sgn DrF* E Cr(R\E),

(ii) Dr(1 DrF*(t)IP-l sgn DrFAt)) = 0, t E R\E,

(iii) DrF*(t) = °for t < inf E and t > sup E,

(iv) Dk(1 DrF* IP-l sgn DrF*) exists and is continuous for
t E R\E' where E' is the set of limit points of E and
k = 0, I, ... , r -- 2. (2.2)

In Section 5 of [3] it is shown that these conditions characterize all solutions
of the Hr'P-extremal problem, the solution being unique if the cardinality
of E is greater than or equal to r. Thus, it follows that F* is a solution to
the Hr'P-extremal extension problem and this completes the proof.

It is easy to see that the Hr,1'-extremal extension problem has a solution if
and only if the set {x: x IE = f and x E Hr,p} is not empty. The situation for
the Wr'P-extremal extension problem is not so simple. The set {x: x IE = f
and x E Wr,P} may well be nonempty and still (1.3) may have no solution. To
illustrate this fact we develop the following necessary condition for a solution
to (l.3),

COROLLARY 2.1. Suppose F* is an extremal Wr'P-extension off: E -+ R,
then

supp F* C co(E), (2.3)

where co(E) denotes the convex hull of E,

This is an obvious consequence of (2.2 iii). In particular for finite point sets
E = {t1 "00' tn} andf: E -+ R, ifJ(ti ) eft °for i =, 1, ... , n then there are many
Wr'P-extensions of fbut no Wr'P-extremal extension.

We now corne to a Wr,p analog of Theorem 1.1.

THEOREM 2.1. Suppose f: E -+ R, {tl' t2 ,oo.} is a dense subset of E, and
Fn is the Hr'P-spline which interpolates f on en = {t1 , ••• , tn}. Then f has an
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extremal Wr'P-extension it and only if there exist intervals III so that

I" C In+! , U:~l In = R, and

sup U I Fn l' ...~. i D'FII I')
l~n<oo In '

x. (2.4)

Proof Suppose f has an extremal Wr.J)-extension F* . Lemma 2,1 implies
that F* is also an extremal Hr'P-extension off. Theorem 1,1 then tells us that

sup r I DrFn !P < x.
l<n<oo "' R

(2.5)

Furthermore in [3, Theorem 2.2], we find that Fn converges to F* in the
normed space Hr,p. Since convergence in Hr.p implies uniform convergence
on compact sets, there is an integer N k so that for all n ? N k

k = 0, 1,.... (2.6)

We may assume that the sequence {Nk } is strictly increasing. If we set

In = [-k, k], (2.7)

we see that In C In+! and U:~l In = R, Now (2.5) and (2.6) imply (2.4) with
the In chosen as in (2.7).

Conversely, if (2.4) holds then we set

Ie (-00, oJ
\

I E (~" , 00) j
(2.8)

By (2.4), {Gn } is a bounded sequence in Hr,p. Since Hr,p is reflexive, a subse
quence, say {Gnk}, converges weakly to G* . Now G* IE = f because point
evaluations are in (Hr,p)*, the continuous dual of Hr. p, Thus, G* is an
Hr'P-extension of f, and it follows that f has an extremal Hr'P-extension
F* . As before, Theorem 2.2 of [3] implies thatFn converges locally uniformly
to F*. Consider the sequence {Xl . Fn}~~l of LP functions. By (2.4) this
sequence is bounded in LP and he~ce a subsequence converges weakly to
(say) B* E LP. Since Fn converges locally uniformly to F* we must have
B* = F* (a.e.). Thus, F* E Lp and since F* E Hr,p also, then F* E Wr,p.
Clearly, F* is the extremal Wr'P-extension off and this completes the proof.
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In this section we consider extending functions f: E -> R to Wr,P, where
co(E) = Rand E = {ti}::_oo, ti < ti+! for i =~ 0, ±1, ±2,.... Particularly,
we will be interested in necessary and sufficient conditions for the extremal
Wr,P-extension to exist. To this end we set

Ar,p = {g E Hr,p[O, I]: g(O) = I

and

(3,1)

If F* is an Hr,P-spline with no knots in (0, 1) and F*(O) = 1, there is a
g* E Ar,p so that F* 1[0,1] = g* . We let

T)r,p = inf II 1g 11'·
gEA r •p 0

LEMMA 3.1. T)r,1J > Ofor 1 < p < 00 and r = 1,2,....

(3.2)

Proof We let P r be the set of polynomials of degree r - 1 or less.
Clearly, g E Ar,p if and only if

(i) get) = Q(t) + f f'··· f r

-

1

I P(Tr )II/(p-l)
o 0 0

. sgn(P(T,.)) dTr ... dTl'

(ii) g(O) = 1,

(iii) Q E P r and P E P r • (3.3)

Now using the local compactness of P r and the continuous dependence of
g on Q and P, Q(O) = 1, the result quickly follows.

From Lemma 3.1 we obtain certain necessary conditions, in terms of the
interpolation conditions and the mesh, that a Wr,P-spline exist.

COROLLARY 3.1. Let E = {ti}:'=_oo , ti < ti+1 , and let f map E into R. If
an extremal Wr,P-extension exists, then

00

(i) L If(t;W I ti - ti +1 I < 00,
i=-'X)

(3.4)
00

(ii) L 1 f(t;)lp 1 ti- 1 - ti I < OO.
i=_oo
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Proof We let F* be the extremal W",Ji-extension off For each interval
(Ii' ti-i-l) we have

(3.5)

The last inequality follows from (2.2 ii) and the definition of 1)r,lJ' Since
1),..P is positive by Lemma 3.1 and F* e VI, we may sum the end terms of
(3.5) over i to obtain

;? L i f(tiW I ti-1-1 - t i
i=-x,

(3.6)

This implies (3.4 i) and (3.4 ii) follows in a similar manner.
Let us review the definition of the extremal W"'P-extension in order to

point out a sufficient condition for a solution to exist. We are given an
f: E ----+ R and if we set Vj = {x e W",Ji: x IE = f} then (1.3) becomes

(3.7)

We define V/ = {D"x: x e Vj}, so that V/ is a flat in LP, and the solution
F* to (3.7), if it exists, has an rth derivative which is the best approximant
to e (the zero element in LP) from V/. Thus F* exists if

inf f I x ill
XEV/ R

(3.8)

is attained. LP is uniformly rotund so that (3.8) has a (unique) solution if
V/ is closed. Assuming that V/ is not empty, it is easy to see that V/ is
closed if and only if Vo" = {D"x: x e wr,p and x IE = O} is closed. It follows
that one way to prove the existence of extremal WT'P-extensions is to show

(i) V j =1= 0,

(ii) VOT is closed in LP. (3.9)

We now further specialize our partition E. The set E = {ti}~~_oc is called
quasiuniform if there are two strictly positive numbers 01 and O2 so that

i = 0, ±l, ±2,.... (3.10)

LEMMA 3.2. If E = {ti}::_oc is quasiuniform, then VOT is closed in LP.
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Proof Suppose {gn}~~l C Vor and gn converges to g in LP. Since gn E Vor,
there are Gn E Wr.p so that Gn IE = 0 and DrGn = gn . Clearly Gn converges
in Hr,p to G where (due to the local uniform convergence)

(i) G IE = 0,

(ii) DrG = g. (3.11)

Thus, all we need to show is that G is in LP, Let °1 and °2 be the constants
of quasiuniformity for E as in (3.10). Using Rolle's theorem repeatedly one
can see that there are quasiuniform sequences {u/}J:-oo, k = 0, 1, ... , r - 1,
satisfying

(i) DkG(U/) = 0, j = 0, ±1, ±2,... ; k = 0, 1,... , r - 1,

(ii) °1 ::0:;; U;'-t-l - U/' ::0:;; 3k-t-102 ' j = 0, ± 1, ±2,... ;

k = 0, 1,...,r-1. (3.12)

We define inductively a function similar to the greatest integer function [.J
by

(i) [tJo = {ut u/ ::0:;; t ::0:;; u~-t-l},

(ii) [t]k = {u/': u/ ::0:;; [t]k_l < uf-t-l},

It is easy to see that

k = 1,... , r - 1.
(3.13)

Final1y, we note that G E LP because

(3.14)

00 r-2 p

~ L (u?-t-l - uiO) (n (U?-t-l - [uiO],,») (u?-t-l - [uiO]r-l)P/q
i=-oo lc=O

lip + 11q = 1. (3.15)
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Using (3.12) and (3.13) we note that

k-' 1

(U~+1 -- [UiOL) :S; 82 (I 3))
j=l

It follows that

k 0, I, ... , r - I. (3.16)

(3.1 7)( 8 (YH - 3 ))2 f
:S;K -t 2 R 1g1IJ.

The constant «82/81)«3'+1 ~ 3)/2))2 in the last inequality results from the
fact that we are integrating over possibly overlapping intervals. By (3. I6)
we may take

_ pr (r-2 \ 3"+2 - 3 1)1'( 3r+1
- 3 )PjQ

K - 82 (3) n/--2---\ 2 . (3.18)

Since g E LIJ we have G E V' also. Therefore, Vor is closed since {gn}~=l was
an arbitrary Cauchy sequence. As a corollary we observe

COROLLARY 3.2. If E C R contains a quasiuniform sequence then Vo' is
closed.

From Corollary 3.2 we draw the following corollary.

COROLLARY 3.3. Suppose f: E -+ R, with E containing a quasiuniform
sequence. Then f has a Wr'P-extension if and only if it has an extremal Wr.I'
extension.

Proof If f has a Wr'P-extension then Corollary 3.2 implies that (3.9)
holds, and, hence, f has an extremal Wr'P-extension. The converse is clear.
We note that this corollary is in contradistinction to the case when E is
finite and there are many Wr'P-extensions and possibly no extremal exten
sions.
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We are now in a position to prove one of the main results of this paper.

THEOREM 3.1. Let E = {t;}~_oo , t;+l > t; , be quasiuniform, 1 < p < 00,

and f map E into R. There is an extremal Wr'P-extension off ([ and only if
{f(t;)}':::_oo is in Ip.

Proof. If there IS an extremal Wr.P-extension, Corollary 3.1 implies

00

L [f(t;)1 PI tH1 - t; I < 00.
i=-oo

(3.19)

Since E is quasiuniform this means that {f(t;)}r~-"" is in Ip.
Conversely, suppose that {f(t;)}':~_oo E Ip and E is quasiuniform with

o < 01 ~ t;+l - t; ~ °2 , Let c/> be an infinitely differentiable real-valued
function whose support is contained in (-01/4, 01/4), and set C/>(O) = 1. It
is then easy to verify that

L f(t;) c/>(t - t;) E W"p.
i=-oo

(3.20)

Since E is quasiuniform, Lemma 3.2 tells us that Vo
r is closed. Thus, (3.9)

holds and the extremal Wr'P-extension problem has a solution.
We obtain from Theorem 3.1 a corol1ary which yields insight into the

structure of wr,p.

COROLLARY 3.4. If FE W r.1) and E = {ti}~_"" is quasiuniform then
{DkF(ti)}~_oc EO Ip for k = 0, I, ... , r - 1.

Proof. Since FE wr,p and E is quasiuniform, Corollary 3.3 implies that
F IE has an extremal Wr'P-extension. Theorem 3.1 then tells us that
{F(t;)}~~_ooE Ip. Now DkFE w r- k.p for k = 0, ... , r - 1, and by applying the
same argument we get {DkF(t;)}~_x E Ip.

In closing this section we would like to point out that Theorem 3.1 tells
us that we have an extremal extension (hence an extension) of a function
under certain circumstances if it is in [p. Similar results for Hr'P-extensions
have been derived by Golomb [3], with the difference being that instead of
requiring f to be in Ip one requires that the rth divided difference off to be
in 11'. Jerome and Schumaker [5] and Schoenberg [6] treat the problem of
determining whether a function x is in Hr,p. They get necessary and sufficient
conditions for x to be in Hr.p in terms of rth divided differences of x being
uniformly bounded in some weighted Ip spaces.
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4. THE Wr'''-SPLINE OPERATORS

(4.2)

Suppose E C R; we define

(i) W~'l' = {x E Wr,v: x is the extremal W"'''-extension of x !E},
(4.1)

(ii) H~'l' = {x E Hr,p: x is the extremal H""-extension of x Ie}.

We will feel free to drop the superscripts (r, p) when no ambiguity results.
The set W~'l'(H';D is called the set of Wr'P-splines (W,P-splines) with knots
in E. Throughout this section we retain the assumption that E is closed.

The approximation map, T;'P, assigns to a Wr,p function x the wr,p_

spline, T;·1Ix , which is the extremal Wr'P-extension of X IE (when such an
extension exists). Again we will drop the superscripts (r, p) when possible.
The approximation map, S~:,l', which maps Hr,p onto the set H *1'. is defined
in a similar manner.

If the cardinality of E is larger than or equal to r, then S~'P is well defined.
Conditions that make TE well defined are stated in the following theorem.

THEOREM 4.1. The map TE is well defined il and only (l E contains a
quasiuniform sequence.

Proof If E contains a quasiuniform sequence then Corollary 3.3 implies
that TE is well defined.

If co(E) = Rand E does not contain a quasiuniform sequence, then
without loss of generality we may assume that there are two sequences
{ex/}~o , k = I, 2, of real numbers satisfying

(i) ex/,EE,j=O, I, ... ;k= 1,2,

(ii) ex/ < exl, j = 0, I, ... ,

(iii) En (exl, exl) = 0, j = 0, I, ... ,

(iv) (exj2 - ex/) ->- (f) as j -)0 00.

There is a {Yj}~-c.e E IP so that the sum 2:;:0 I Yj IP(exl- ex/) diverges. It is
easy to see, following the construction of (3.20), that there is a function
x E wr • p so that X(exj2) = Yj for j = 0, I, .... Corollary 3.1 then implies that
x IE has no extremal Wr'P-extension, and, hence, TE is not defined at x.

Finally, if co(E) ole R we may assume that inf(E) = to > - 00. Clearly
there is ayE wr,p so that y(to) =I' 0. Corollary 2.1 tells us that y can have no
extremal Wr'P-extension. This completes the proof of Theorem 4.1.

THEOREM 4.2. If E contains a quasiun(lorm sequence the map TE is
hemilinear, idempotent, continuous, and bounded.
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Proof We set Vo = {x E Wr,p: x IE = O}, Clearly Vo is closed in W r.p

and, by the assumption on E, Vor is closed in LP (Corollary 3.2). The map

(4.3)

is continuous, linear, and onto. By the open mapping theorem Dr Iv0 has
a continuous inverse which we denote by D-r. We set P v r == P to be the

o
(continuous) metric projection from LP onto Vo

r • Thus we may write

TE = I - D-r 0 P 0 Dr, (4.4)

where I is the identity map from wr,p to w r.p. Theorem 4.2 follows by
examining the right side of (4.4).

For the map SE we have similarly the following theorem.

THEOREM 4.3. If E contains r or more points then S~P is hemilinear,
idempotent, continuous, and bounded.

This is a strengthening of Theorem 6.2 of [3] where Golomb proves that
Se is slightly continuous. Theorem 4.3 is a special case of a more general
result of Holmes [4].

We now assume that E = {ti};:_oo is a quasiuniform partition with 0 <
()1 < ti+! - t i < ()2 for all integers i. For any sequence Y = {Yi};:-oo wa
define

(4.5)

Let lp denote the Banach space of doubly infinite sequences Y which have
finite norm, II Y Ib = (l:~~-oo I Yi IP)lIP. Similarly, let hr,p be the space of
sequences Y for which the norm

r 00 lip

IIYllhr,. = (I [YiIP+.I Ifiti,,,.,tHr)]p) (4.6)
1.=1 1.=-00

is finite. The notation liti , ... , tHr) means the rth divided difference of h
on the point set {ti ,.", tHr}. From (3.20) we see that there is a linear injection
h : lp -- W r.p defined by hey) = l::-ooh(ti) ,pet - ti). It is not hard to see
that IE is continuous. We define a map, t;·P, with domain lp by

(4.7)

The superscripts again may be dropped when no confusion arises.

THEOREM 4.4. The map tE is a homeomorphism which takes Cauchy
sequences into Cauchy sequences between lp with its norm topology and W *E

with its relative wr,p norm topology.
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Proof The map tE is continuous because it is the composition of two
continuous maps.

In order to see that (tE)-1 is continuous we first prove a result of indepen
dent interest.

LEMMA 4.1. The wr,p norm x I!u' + Ii Drx ilL. is equivalent to the norm

(

IX r-l 1/1)

1x iwr,p= I I I DkX (t;)i1') +1 Drx liL'" (4.8)
i=-CD k=O

where it is assumed that E = {t;}~_oo is quasiuniform.

Proof For any x E wr,p we have

(4.9)

Using the facts that norms are equivalent on finite dimensional spaces and
E is quasiuniform, we find that there is a positive constant C depending
only on E so that

rx.;, r-l lip

/1 ~ C CI I I DkX (t;)i1') ..
1.=-00 k=O

By an argument similar to that in (3.15) we see that

Therefore,

(4.10)

(4.11 )

(4.12)

Convergence in I . Iwr,P in particular implies convergence in Hr,p and further
more that the limit is an Hr,p function which interpolates !p data on a quasi-
uniform partition. It follows that w r.p is complete in 1 . 1 wr,p since x E Hr.p
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and {x(t;)};':_co E lp imply that x E Wr,p. This can be seen by subtracting any
wr,p function y which interpolates x on E from x and noting that the proof
of Lemma 3.2 tells us that x - YELP. We apply the open mapping theorem
to get a constant K so that [ x IWT,P ;? K II X IlwT,P , This completes the proof.
An immediate corollary follows.

COROLLARY 4.1. The norm II ' liwT,p is equivalent to

We now return to the proof of Theorem 4.4, Let Xn E W*E and Xn con
verge to X* E W*E, the convergence being in the wr,p norm topology and
hence in I • !~T,P , Corollary 4.1 then implies that

(4.13)

Thus tE is a homeomorphism and clearly (te)-l takes Cauchy sequences into
Cauchy sequences, obviously so does tE , and thus Theorem 4.4 is proved.

If the proof of Theorem 3.1 of [3] is examined one sees that there is a
continuous linear map L: hr,p --+ Hr,p so that L(y)IE = h . We define a map,
s;iP, analogous to tEby

(4.14)

THEOREM 4.5. The map s;,p is a homeomorphism between hr,p and H~~.

Proof By [3], Theorem 6.3, we know that (SE)-l is continuous. To prove
the forward continuity we note that SE is the composition of two continuous
maps, For other results on homeomorphic images of spline sets we refer the
reader to [4].

5. TAYLOR FIELDS

As in Section 4 we assume here that E = {t;}~_co, t;+l > t;, is quasi
uniform. Let JL be a map from E into the set of integers {I,... , r}. Suppose
for each t; E E we have defined numbers 10(t;), ... ,I,,(1)-1(t;). We list the
elements of E in order, repeated according to the multiplicity function JL,
starting at to . Thus we obtain the doubly infinite sequence

(5.1)

where to = 7"0 = 7"1 = 7",,(t
o
)-l < 7",,(to)' On this new sequence we define a

real-valued function 1 by f (Tk) ~ fi(t;), where Tk = t; and Tk_j = t; but
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Tk-j-1 = t;_l . We call x* a Wr,JI-spline with knots of multiplicity ft(tJ at
t; interpolatingf if

min /If I Drx II!: D"x(ti ) = (k!)j~(tJ,
XEWr,P , R

1=,0, ±1, ±2,... ,

k = 0, 1,... , ft(t i ) - 1( (5.2)

is attained at x = x* . Since Wr. p is complete in I . Iwr,p, it is easy to see
that (5.2) has a solution. Similarly, we define an Hr,P-spline with knots of
multiplicity ft(t i ) at ti interpolating f by replacing wr,p in (5,2) by Hr. JI . Set

w~'l',,, = set of solutions to (5,2) as f varies over all functions from

(5.3)

The set H~'l,,, is defined analogously. Let Y = {Yi};:-ac be a sequence of real
numbers, We define/" : {Ti};:_ac --+ R by fy(Ti) = Yi ' Subsets of all sequences
Y may be normed by

(i) II YIIIP = CI 1f/Ti) I1'(1',
t=-Cf)

(5.4)
r-1 ro l/JI

(ii) II Y Ilhr," = (I If/Ti)IJI + .I IfiTi ,.. " Ti+r)ITJ) ,
t=O t=-oo

where the extended divided difference in (ii) is defined in the natural way
(see e,g. [3]), The set of sequences for which (i) is finite is called IJI and the
set for which (ii) is finite is called hr,JI, As before, we define the map t;;:~

which maps II! onto W~'l." by assigning to Y E IJI the Wr,I!-spline with knots
of multiplicity ft(t i ) at ti interpolating fy. Similarly we define s;;',~ which
maps hr,p onto H~'l,,, by assigning to Y E hr,JI the Hr,P-spline with knots of
multiplicity ft(t i ) at t; interpolating h '

We now state two theorems without proof since the proofs are easy
generalizations of proofs in the previous sections. (For the wr,p case take
special note of Lemma 4.1 and Corollary 4,1.)

THEOREM 5.1. The map t;;:~ is a homeomorphism between 11' and W~·I,J.<

(both with the usual norm topology). Moreover, both t;;',~ and its inverse take
Cauchy sequences into Cauchy sequences.

THEOREM 5.2. The map s~'.~ is a homeomorphism between hr,p and H~l,,., .

It is easy to see that both W;'l',,., and H;'l.,., are cones. Tn [3] Golomb proves
that H~l,,., is closed and nowhere dense in Hr,p,
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THEOREM 5.3. Suppose E is quasiuniform. The cone W;':,IL is closed and
nowhere dense in wr,v.

Proof W;'I,IL is closed since the homeomorphism (t~',~)-l by Theorem 5.1
takes Cauchy sequences into Cauchy sequences. The proof of the nowhere
density is essentially the same as in [3], Theorem 6.1, and will be omitted.

6. ApPROXIMATION BY wr'V-SPLINES

In this section E will be any set of real numbers so that co(E) = Rand
I E I, the maximum spacing between elements of E, is bounded. In particular,
this means that E contains a quasiuniform sequence and hence TE is well
defined. Given any x EO Wr,p we want to measure

j = 0, 1, ... , r, (6.1)

in terms of I E I and II x Ilwr,p. We state the fundamental lemma.

LEMMA 6.1. Suppose x EO wr,p and x IE = 0. Then there is a constant Kr,
depending only on rand p, so that

(6.2)

Proof Let x and E be as above. In a process similar to that of (3.12) we
can find sequences {u/};:_ro, k = 0, I, ... , r - 1, satisfying

j = 0, ±l, ±2,... ;

k = 0, 1, ... , r - 1.

j = 0, ±1, ±2,... ; k = 0, 1, ... , r - 1,
(6.3)

We write

and taking into account (3.15)-(3.18) we obtain

(6.4)

This is (6.2). Using this lemma we can now prove the following theorem.
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THEOREM 6.1. There are constants K/. depending only on r. P. and.i so
thatlor every x E WI'· P and.i = 0, 1,. ..• r

K/ E r--j Drx

K/!E (6.6)

Proof For.i =, 0, 1,... , r - I we note, using Rolle's theorem, that there
is a quasiuniform sequence EJ satisfying Ej ~ (j + 1) ! E 1 and
DJ(x - Tf'Px)(t) = ° for t E EJ . Since Dj(x -- Tf'Px ) E WH.]) for j
0, 1, ... , r - I, we may apply Lemma 6.1 with r replaced by r - .i obtaining

II DJ( - T"',P)11 < K r -- J ! E ,r-j I! Dr ( T r •
p )!IX - E X I LV ~ J i , X - E X 'L"

From representation (4.4) we observe that

2 I! Drx I!L" ' (6.8)

since metric projections are always bounded by twice the norm of their
argument. Thus, setting K/ = 2KH(j -+ l)r-j for .i = 0, 1, ... , r - I and
K/ = 2, (6.7) and (6.8) yield the first half of (6.6) and the second half is
clear.

The derivation of L"'-error bounds is even easier.

LEMMA 6.2. Suppose x E Wr.}' and X:t. = 0. Then there is a constant
KT, depending only on rand p, so that

.i = 0, I, ... , r - 1. (6.9)

Proof There are sequences {u/};:_x, k = 0, I, ... , r - I, satisfying (6.3)
for x. Furthermore, by representation (6.4) and Holders inequality we obtain

(6.10)

The last inequality in(6.10) is independent of t so that by taking the supremum
of the end terms in (6.10) yields (6.9).
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THEOREM 6.2. There are constants K/, depending on r, p, and j only, so
that for every x E wr.p we have

II Di(x - T;'Px)IILoo <; Kir I E Ir-i-l/p II DrX IILP

<; K/ I E 1r-J-1
/P II X Ilwr.p , j = 0,1,... , r - 1.

(6.11 )

The course of the proof of Theorem (6.2) is essentially the same as that
of Theorem (6.1) and can safely be omitted. We also obtain the following
corollary.

COROLLARY 6.1. There are constants K/, depending only on r, p, and j,
so that for every x E Hr. p and j = 0, I, ... , r - I,

(6.12)

Let us now consider the Hilbert space (Wr .2) case in greater detail. We
assume that E = {ti}r~~oo , ti+l > ti , is quasiuniform. From the characteriza
tion (2.2) of the Wr •2-splines we find that for x E Wr.2, T;·2X is piecewise
polynomial of degree 2r - I and T;·2(X) E C2r- 2(R). These are familiar
properties of splines. If we were working on a finite interval I we would
conclude that the spline is in W 2r- 1.2(I). In this direction we have the fol
lowing lemma.

LEMMA 6.3. If E is quasiuniform and x E Wr.2 then T;·2X E W 2r-1. 2.

Proof We write

(6.13)

T;·2X is in P so by using the quasiuniformity and the equivalence of norms
on finite-dimensional spaces we obtain

00 2r-l 1/2
II T;.2x 112 ;?: C (L: L: I Dix(t/)1 2) ,

l=~OO )=0
C >0. (6.14)

In particular {D2r-lx (ti +)};:-oo E [2, and it follows that r;·2x E W2r-1,2 since
it possesses the required continuity conditions. We are now in a position to
prove the second integral relation.

LEMMA 6.4. If E is quasiuniform then for all x E W2r.2 we have

(6.15)
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Proof The proof of this result follows the standard integration by
parts argument. We calculate (E = {ti}~~_c£ , t i +1 tJ

r-1

+ I L (_I)i Dr+j(x - T~·2X)

Ikl<;;N j~O

k"l'N

(6.16)

In order to reach the last equality we have used the fact that x and T'i 2x
are in C2r- 2(R) and that (x - Tf·2X)IE = 0. Since (x - Tf·2X) E W 2r-1.2,

Corollary (3.4) implies {Di(X - Tf·2x)(ti)};:_ro E 12 for j = 0, 1, ... , 2r - 2.
Thus the limit in the last term of (6.16) tends to zero as N -+ 00. This yields
(6.15) which is also known as the second integral relation. Once the second
integral relation is proved, it is well known (see [7]) that better error estimates
can be derived for smooth functions.

THEOREM 6.3. Suppose E is quasiuniform; then there are constants M/
and N/, depending only on j and r, so that for all x E W2r.2

j = 0'00" r,

(6.17)

~ N/ I E 12r-i-lj211 X II W2r.2' j = 0, 1'00" r - 1.

Proof We will just sketch the proof since the ideas are not new. Applying
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the Cauchy-Schwarz inequality to the right side of (6.15) and then using
estimate (6.7) with j = 0 yields

Dividing both sides by II D'(x - T~·2x)IIL2 and again using (6.7) we get

(6.19)

The second half of (6.I7(i)) is clear and (6.17(ii)) follows in a similar manner.

7. INTERPOLATION SPACE RESULTS

Butzer and Berens [2] describe methods of obtaining intermediate Banach
spaces given two Banach spaces Xl and X2 • Using the K-method for gener
ating intermediate Banach spaces (Xl' X2)B,q (0 < e< 1, 1 ~ q < 00 and/or
o~ e~ 1, q = (0) permits us to state [2, p. 180].

THEOREM 7.1. Let Xi, Yi , i = 1,2, be Banach spaces and T be a linear
mapping from Xl + X 2 into YI + Y2 so that T Ix.. : Xi ->- Yi , i = 1,2. If
II T IX

i
II = M i , i = 1,2, then '

(i) T: (Xl' X 2)B.q ->- (YI , Y2)B,q ,

(ii) II TIIB.q = sup II Tx II(y,.Y2)B.q :os; M:-BM 2
B

•

1~llxIlIX"X2)B.q

(7.1)

We have developed error bounds for W"P-spline approximation in both
the LP and Loo norms. In the last two sections we obtained bounds for W,·2
and W2,,2 functions. Theorem 7.1 will then yield more error bounds in
intermediate spaces. We note that (LP, L oo)B.q is equal to Lq when I/q =

(1 - e)/p with equivalent norms, see [2] Theorem 3.3.6, and that
(X, X)B,q = X.

THEOREM 7.2. There are constants C; depending only on 1 < P ~ q ~ 00

and j = 0, 1, ... , r - 1 so that/or every x E W'·P we have

Proof. We set Xl = X 2 = W'·P, YI = LP and Y2 = Loo. Suppose
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fE (Wr,1')*, the continuous dual of Wr,l\ with norm I. The map T; defined
l)

on wr,v by

(7,3)

is linear, continuous, and by (6.6) and (6.11) satisfies

(i) sup II no(x)il p ~ K/ I E
l~llxll wr ,,,

il xoIlwr.",

(ii) sup II T~o(x):le'
l~llxll wr • p

K,*r I E I r-j-l/V II :\ I
I I .. 0 IW r ,]) , (7.4)

for j = 0, I, ... , r - I. Thus, T; fulfills the requirements of Theorem 7.1,
l)

and since

(r -j)(l - 8) + (r -j - l/p)8 (r -j) - 8/pc= (r -j) + (l/q - lip)

we obtain (7.2).
The Wr ,2-spline operator T~,2 is linear so that we may apply Theorem 7.1

directly. The development here closely follows that of Varga [9]. It is known
that (Wr ,2, W 2r ,2)O,q = B~,q, a = (I + 8)r. The spaces B~·2 are called Besov
spaces [1]. Furthermore, if a is an integer and q = 2 then B~,q = Wo •2• The
maps x f-+ Di(x - T;;2X), j ~~ 0, I, ... , r - 1, take W r.2 and W 2r ,2 linearly
into both P and Lex; with the bounds (6.6), (6.11), and (6.17). Theorem 7.1
yields the following theorem.

THEOREM 7.3. If x E B~,q, a =c rO + 8), and q = 2/(1 - 8) then

II Dj(x - T;,2x)llL" ~ M i I E :a Je
l/

q
-1I2 II x :Iso." , j = 0, I, ... , r --- I.

2 (7.5)

Finally, setting q = 2 and keeping the range space £2 we obtain the
following theorem.

THEOREM 7.4. If n is an integer between rand 2r and x E W",2, then for
j = 0, 1, ... , r we have

Di ( 7,'r.2 )1'x - E X Ijc~ M I E !n-j II X Ilwn,2 . (7.6)

The proofs of both these theorems follow immediately from Theorem 7.1
and the error bounds previously derived.
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